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Abstract

Soil slope stability problems in engineering works are usually analysed using limit equilibrium methods. A number of existing

methods are based on finding the critical circular failure surface for homogeneous soils, but failure surfaces tend to be non-circular

for layered slopes. A simple genetic algorithm is presented to search the critical non-circular failure surface in slope stability analysis

and is used to solve the Morgenstern–Price method to find the factor of safety. The pseudo-static horizontal and vertical forces due

to earthquake and surcharge load due to existing buildings and structures on natural slopes are included in the analysis.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

There are many different ways to compute the factor

of safety of earth dams or natural slopes including limit

equilibrium, finite element and finite difference methods.

In recent years the finite element method has been used
for slope stability analysis, but limit equilibrium meth-

ods are still common practice.

Many methods have been presented to compute the

factor of safety using limit equilibrium with a circular

failure surface [3,9,12]. A simple circular failure surface

method is sufficient for a slope in a homogenous soil

layer, while for a heterogeneous multi-soil layers slope,

a non-circular failure surface method should be consid-
ered as circular methods can over predict the factor of

safety. Limit equilibrium has also been used for non-cir-

cular failure surfaces [1,2,4,5,8,11], and some of these

methods are summarized below.

Nguyen [11] developed a method where the factor of

safety is formulated as a multivariate function F(x) with
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the independent variables x describing the geometry of

the failure surface. He employed the simplex method

as the optimisation technique. Celestina and Duncan

[5] used the same approach for non-circular failure sur-

faces, but used the alternating-variable optimisation

technique. Li and White [8] proposed a more efficient
one-dimensional optimisation technique to replace the

quadratic interpolation method, which Celestina and

Duncan [5] used in the alternating-variable technique.

Baker [1] defined the failure surface by a number of nodal

points connected by straight lines. The vertical coordi-

nates of the nodal points are the variables in Baker�s
method and the dynamic programming technique is em-

ployed as the optimisation method. Bolton et al. [4] de-
fined a global optimisation algorithm for finding the

critical failure surface by nodal points connected by

straight lines for any shape of failure. Bardet and Kapus-

kar [2] presented a simple method of optimisation to

search the critical failure surface using the downhill sim-

plex algorithm. A large number of computations are

needed to find the critical failure surface, as an arbitrary

nodal coordinate could be irrelevant among the rest of
created nodal coordinates. For example, a fluctuated

failure surface shape could be created using nodal coor-

dinates leading to an unrealistic failure surface (Fig. 1).
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Nomenclature

ai failure-line slope (slope of base of slice)

afi failure-line slope of slice with respect to verti-
cal

Dafi difference between two subsequent base slice

failure slopes ðDaf2 ¼ af2 � af1Þ
ahi failure-line slope of slice with respect to hor-

izontal

ah pseudo-static horizontal coefficient of earth-

quake

av pseudo-static vertical coefficient of earth-
quake

b inclination of the chord connecting the two

ends of the natural slope

b width of slice

c 0 cohesion (for effective stress)

F factor of safety

/ 0 angle of shearing resistance (for effective

stress)
/0
m mobilized angle of shearing resistance

ðtan/0
m ¼ tan/0=F Þ

hQ height of intersection of resultant inter-slice

forces

hG height of centre of gravity of slice

Nslice total number of slices, default value is 150

c bulk density
�ci average bulk density of each slice
hi slope of resultant (Qi) of pair of inter-slice

forces

gi slope of inter-slice force Zi

gi+1 slope of inter-slice force Zi+1

P total reaction normal to base of slice

P 0 reaction (due to effective stress) normal to

base of slice

Qi resultant of pair of inter-slice forces Zi and

Zi+1

q surcharge along the slope

S total shear force available

u pore-pressure
Sm total shear force mobilized

W weight of slice

xqi ; yqi coordinates of acting point of inter-slice

resultant forces, Qi

x0i normalized coordinate of slice i

Xei ; Y ei coordinates of mid point of slice base

Xgi ; Y gi coordinates centre of gravity of slice

X si ; Y si coordinates of left side of slice at ground sur-
face

X sðiþ1Þ ; Y sðiþ1Þ coordinates of right side of slice at

ground surface

X fi ; Y fi coordinates of left side of slice on failure sur-

face

X fðiþ1Þ ; Y fðiþ1Þ coordinates of right side of slice on fail-

ure surface

Zi inter-slice force on left side of slice i

Zi+1 inter-slice force on right side of slice i
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In this study, instead of searching and optimising

along nodal y-coordinates, the search through failure-

line slopes using a simple genetic algorithm is presented.

The search through failure-line slopes is much more effi-

cient and quicker to solve than nodal y-coordinates
(x1,y1)

(x2,y2)

(x3,y3)

Fig. 1. A fluctuating failure surface as a ca
searching, because the slope of the failure surface of

each slice (a in Fig. 2) is related to the slope of adjacent

slices. In a slope stability analysis where the failing mass

moves from left to right, the angle of the base of a slice

(a) is usually shifted counter-clockwise when moving
(xn-1,yn-1)

(xn,yn)

se in a Nodal Optimization Method.
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from left to right (e.g., Fig. 2). Searching for a failure

surface using nodal y-coordinates cannot include this as-

pect easily, possibly resulting in an unrealistic failure

surface as shown in Fig. 1.

This paper presents a simple computation format of

the Morgenstern–Price method for the non-circular
slope stability analysis with pseudo-static horizontal

and vertical forces due to earthquake loading. The main

reason for using the Morgenstern–Price is that it is a so-

called rigorous solution (i.e., rigorous in that both force

and moment equilibrium are satisfied if one can make

certain assumptions), and produces realistic answers

for surfaces which require significant internal distortion

of the sliding mass of soil. The option of surcharge load-
ing is also included, which can be used to model the ef-
Qi ¼
c0 �b�seca

F þ tan/0

F ðW � cosa�W � av � cosa�W � ah � sina� u � b � secaþ q � b � cosaÞ �W � sinaþW � av � sina�W � ah � cosa� q � b � sina
cosða� hiÞ � ð1þ tanða� hiÞ � tan/

0

F Þ
ð1Þ
fect of buildings on slope stability. An important feature

is that no assumptions are required with regards to the

geometry of the failure surface and no restrictions are

placed on the positions of the initiation and termination

point of the failure surface.

The simple genetic algorithm used in this study has

two purposes: firstly to find the critical non-circular fail-

ure surface in finite or infinite slopes, and secondly to
solve the Morgenstern–Price method to find the factor

of safety corresponding to the critical failure surface.

As circular failure surfaces are a subset of more general

non-circular surfaces, the proposed method will find a
α

xi

yi

x1 b

Fig. 2. General failure surface in
circular failure surface if this is the critical failure surface

for the particular problem.
2. Presenting a simple solution for Morgenstern–Price

method

Although similar to the Spencer method [12], the

Morgenstern–Price method [10] was selected for the

analysis using the simple computation format.

Fig. 2 shows a natural slope with a head to toe angle

of b. Fig. 3 shows details of inter-slice forces for the slice

number i. As described in more detail in Appendix A,

the resultant of interslice forces in each slice can be writ-
ten as follows:
In order to satisfy equilibrium equations, the summa-

tion of resultant interslice forces and overall moment

over an optional point must be zero. In this case the mo-

ments about the origin (x = 0, y = 0) are taken to be

zero:

X
ðQi � cos hiÞ ¼ 0 ð2Þ

X
ðQi � sin hiÞ ¼ 0 ð3Þ

X
ðMÞ ¼

X
ðQi � cos hi � Y qi þ Qi � sin hi � XqiÞ ¼ 0 ð4Þ
β

a slope stability analysis.
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Slice No: i

q
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G

F

E
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Coordinates of point A: Xsi, Ysi Coordinates of point B: Xs(i+1) , Ys(i+1)

Coordinates of point C: Xf(i+1) , Yf(i+1) Coordinates of point D: Xfi, Yfi

Coordinates of point E: Xei, Yei Coordinates of point F: Xqi , Yqi

Coordinates of point G: Xgi, Ygi

Fig. 3. (a)–(c) Inter-slice forces in slice number i. Coordinates of point A: X si ; Y si . Coordinates of point B: X sðiþ1Þ ; Y sðiþ1Þ . Coordinates of point C:

Xfðiþ1Þ ; Y fðiþ1Þ . Coordinates of point D: Xfi ; Y fi . Coordinates of point E: Xei ; Y ei . Coordinates of point F: Xqi ; Y qi . Coordinates of point G: Xgi ; Y gi .
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To find the factor of safety, Eq. (2) or (Eq. (3)) and Eq.

(4) need to be solved. There will be two equations and

two unknowns such as k and F.

If it is assumed a pair of (F*,k*) is one of the answers
to the two equations f(F,k) = 0 and g(F,k) = 0, then

(F*,k*) will also be an answer to the following equation:

jf ðF ; kÞj þ jgðF ; kÞj ¼ 0 ð5Þ
Using the above algebraic theory, Eqs. (2) and (4) can be

written as follows:X
M

��� ���þ X
ðQi � cos hiÞ

��� ���
¼

X
ðQi � cos hi � Y i þ Qi � sin hi � X iÞ

��� ���
þ

X
ðQi � cos hiÞ

��� ��� ¼ 0 ð6Þ

Eq. (6) is now solved using the simple genetic algorithm

that is explained in Section 3.1.
3. Simple genetic algorithm

The simple genetic algorithm refers to a model intro-
duced and investigated by Holland [7] which uses the

concepts of genetics in a specific way as an optimisation
(a): chromosome of F and λ (b): chro

F λ X1
1 1 0 1 0 1 1 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1

Fig. 4. Examples of tw
tool. A simple genetic algorithm (SGA) uses strings of

binary coding, 0 and 1, to encode whatever information

is needed to define a distinct solution to a problem. This

solution may then be tested to produce a fitness value.

For example, if the goal is to find three unknown values

such as x,y,z, then each chromosome will be a string of

binary digits of x,y, and z. Comparison may be made

with biological coding, which uses units with four possi-
ble values in DNA. Clearly, real variables such as coor-

dinates need to be expressed as integer values by

breaking up the possible range into a number of steps,

so for example xint = round(256(x � xmin)/(xmax � xmin))

for an eight bit binary code.

The simple genetic algorithm works in two main

stages: creating the initial population and reproduction.

First the initial population is created and each number is
stored in a chromosome in the binary format. A fitness

value associated with each chromosome is calculated.

The population is then sorted in descending or ascend-

ing order according to the fitness value. A classical

way of ensuring that the best solution is never lost is

to copy the best individual to the next generation. Then

half of the population is selected for the reproduction

process. A crossover process with a probability of
0.7–0.9 is applied to two selected parent chromosomes.
mosome of x 1, αf1, ∆αf2, ∆αf3,… , ∆αfn:

αf1 ∆αf2 ∆αf3 … ∆αfn
0 1 1 0 0 1 1 0 1 0 1 1 0 0 0 1 1 1 … 1 0 1 0

o chromosomes.



β

αf1

∆α
f2

∆α
f3αf 2

αf3

αh1
αf 1=αf 1 αh1=270+αf 1 α1=360-αh1    

αf 2=αf 1+∆αf 2 αh2=270+αf 2 α2=360-αh2 

αf 3=αf2+∆αf 3 αh3=270+αf3 α3=360-αh3  

αi

Fig. 5. Non-circular failure surface.
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A random position along the length of the chromosome

is selected and the values of each binary string are ex-

changed or crossed by swapping all characters after this

position. The two new chromosomes created are known

as children of those parents. Mutation is applied to a

small proportion of chromosomes, thus introducing
Fig. 6. Slope stability analysis pr
the possibility of significant shifts away from the solu-

tions currently being converged on, that overcomes

problems associated with local maxima or minima in

analyses. Each binary value in a chromosome selected

for mutation is swapped with a probability of 0.008,

i.e., each 0 or 1 is changed into 1 or 0 with a probability
ogram (SlopeSGA) in VB6.
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of 8/1000. The fitness values of the new population,

which include both children and parent chromosomes,

are then calculated.

The process of reproduction, crossover, mutation and

evaluation is repeated as a cycle of generation. A num-

ber of cycles are performed until an optimal solution
is determined. Goldberg [6] refers to this basic imple-

mentation as a simple genetic algorithm (SGA). The

selection of the part of each generation to go into the

reproduction process means that the population as a

whole tends to get fitter. This might mean that the pop-

ulation tends towards being identical, or if there are a

number of solutions with a similar fitness, then the pop-
Convert F and λ into binary format and

Solve equation 6: Fitness = .cos.( YiiQi θ +Σ

Sorting data ascending based on fitness value, tak

Reproduction Process 

Crossover Process

Generating childre

Solve equation 6: Fitness = .cos.( YiiQi θΣ

Sorting data ascending bas

F and λ corresponding with the lowes

Rnd < 
Mutation 
Probability Yes

No 

End

No Is Required
Cycles exc

Create population of si

  Start

Fig. 7. Simple genetic algorithm
ulation can converge on all the solutions at the same

time. It may be necessary to adjust the parameters of

the search to ensure that local maxima (or minima, in

this case) are not rejected too early.

McCombie and Wilkinson [9] developed a simple ge-

netic algorithm to search for the minimum factor of
safety of a circular failure surface in slope stability

analysis. They presented a three-dimensional chromo-

some coding containing the x and y coordinates of

the centre of a circle and the radius of a circular failure

surface. They also showed that replacing the radius

with a tangent level, or with the coordinates of a point

the circle had to pass through (thus creating a four
 store them in a chromosome

)cos.().sin. iQiXiiQi θθ Σ+

ing top half of population for reproduction 

Selecting a pair of chromosomes as
parent 1 and parent 2 

Mutation Process 

n 1 and children 2 

)cos.().sin. iQiXiiQi θθ Σ++

ed on fitness value  

t fitness value are the solution

Rnd < 
Crossover 
Probability

Yes

 No of 
eeded?

ze N of F and λ

No

to find factor of safety.
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dimensional search space), would usually work better,

as the formulation of the problem becomes closer to

what determines the fitness of each chromosome. In

addition, the use of a simple genetic algorithm was

found to be more efficient at solving slope stability

problems than ‘‘traditional’’ numerical optimisation
methods. While this previous research is only applica-

ble to circular failure surfaces, the solution algorithm

can be extended to non-circular failure surfaces. In this

case definition of the surface by the change of angle at

points along it is a more natural definition of the prob-

lem than using y co-ordinates, and can, therefore, be
Convert x1, αf and ∆αf into binary format

No
F = 100 

         Failure  
surface hits the
  slope geometry

Reproduction Process 

Crossover Process 

Generating ch

Sorting data ascending based on fi

Critical failure surface is correspondin

End

Y

Yes 

No 

Is
  Required N
  Cycles exc

  No 

 Yes

Failure su
the slope F = 100 

No

         Rnd < 
     Crossover  
    Probability

Sorting data ascending based on Factor of safety, ta

Create population of size N of x1, αf and ∆αf (N e

Start

Fig. 8. Simple genetic algorithm to fi
expected to produce more efficient convergence by pre-

venting unrealistic failure surfaces similar to those

shown in Fig. 1.

3.1. Using the simple genetic algorithm to solve Eq. (6) in

order to find the lowest factor of safety of a non-circular

failure surface

Eq. (6) shows there are two unknown variables (hi
and F). Using Eq. (14) or (15), hi can be replaced with

k. As in any numerical solution technique, the initial

population (values) of F and k has a considerable effect
 and store them in a chromosome

Yes
Morgenstern-Price 
SGA method to get F

Selecting a pair of chromosomes as
parent 1 and parent 2 

Mutation Process 

ildren 1 and children 2 

tness value (factor of safety) 

g with the lowest factor of safety

         Rnd < 
     Crossover  
    Probability

es
No

o of  
eeded?

Morgenstern-Price 
SGA method to get F

Yesrface hits   
geometry

king top half of population for reproduction 

quals to no of slice, Nslice-default=150) 

nd non-circular failure surface.
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on the convergence rate. The initial value of k is as-

sumed to be approximately 0.7 tanb [13].

Let N be the size of the population for F and k, and
0.5 the percentage of reproduction. In order to easily

convert F into binary code, in the initial population, val-

ues of F are created in a range of 1–1000 as integer val-
ues. Values of k are created in a range around

100*0.7 tanb (0.7 tanb is a real value). These values are

converted into binary format and stored in a string as

a chromosome (Fig. 4). The values of F and k are di-

vided by 100 to obtain their real values in the calcula-

tion. The fitness value is calculated for every

combination of F and k in the population using Eq. (6).
38

40

42

44

46

48

50

52

10 15 20

Y (m) Factor of Saf
Circular
Non-Circula
* Bishop Me

A 

C' =1500 kg/m2

φ' = 20 
γ = 1900 kg/m3

Fig. 9. An example of a natural slope

Fs=1.75

0.10

1.00

10.00

100.00

1000.00

10000.00

0.5 0.6 0.7 0.8 0.9

Fitness Value=
Abs(Qcosθ) + Abs(M)

(kg.m)

Fig. 10. Converging the fitness value
Fitness ¼
X

ðQi � cos hi � Y i þ Qi � sin hi � X iÞ
��� ���
þ

X
ðQi � cos hiÞ

��� ���
The chromosomes are sorted into ascending order

according to their fitness value and the half with the low-

est fitness value is selected for the reproduction process.

The crossover and mutation are applied to chromo-

somes during the reproduction process as described
above. The population is subjected to a number of ge-

netic cycles in order to find the F and k that minimize

the fitness value. All these calculations are performed

in a slope stability analysis program, SlopeSGA that is
25 30 35X (m)

ety Bishop Morgenstern 
1.74 1.76

r    * 1.75 
thod is for a Circular Failure Surface 

Circular-Failure

Non-Circular Failure 

(m) X Y
A 15 50
B 32 41.5

B 

with a homogenous soil layer.

1 1.1 1.2 1.3 1.4 1.5
λ

in Morgenstern–Price method.
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written in Visual Basic 6 by the first author, as depicted

in Figs. 6 and 7.

3.2. Using the simple genetic algorithm to find critical

non-circular failure surface

As the initial part of the simple genetic algorithm

method, a population of all searching parameters needs

to be created. The first x coordinate of the failure sur-

face, x1, is created randomly. Let Nx1 be the number
1.74

1.79

1.84

1.89

1.94

1.99

2.04

2.09

0 5 10 1

Minimum Factor of
Safety

Fig. 11. A comparison between rand

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

0 10 20

Factor of
Safety

Simple Genetic Algo
Min-Factor of Safety

Fig. 12. A comparison between th
of populations for x1. Therefore, Nx1 cases of x1 are cre-

ated randomly. Now let Naf be the number of popula-

tions for af for each x1. Therefore, Naf cases of af1 are

randomly created for each x1. The initial value of af1
is chosen randomly around the Rankine failure angle

range. As the Rankine failure angle with respect to the
horizontal is 45 + //2, the af1 range will be 45 � //2 or

30–45, for / equals to 30 and 0, respectively (Fig. 5).

These two values of x1 and af1 are converted into binary

code and stored in a chromosome.
5 20 25 30
Generation

om reproduction and the SGA.

30 Time(sec) 40

rithm
=1.75

Simplex Method
Min-Factor of Safety=1.75

e SGA and simplex method.
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After choosing x1 and af1 for a failure surface, the rest
of the failure-line slopes through the failure surface need

to be chosen. As shown in Fig. 5, each failure-line slope

has a relation to the previous one, so instead of choosing

failure-line coordinates as in previous research, e.g. [1],

the angular difference Dafi between each successive fail-
ure-line slope is chosen randomly for all slices. This al-

lows the population of irrelevant failure-lines slopes to

be ignored easily.
41

51

10 15 20

Non-circular failuA 
Circular failure, F

1 
E B

2 

F 
3 G 

4 

Layers 1 2 3 4
c' (kg/m2) 1500 1700 500 3500
φ' 20 21 10 28
γ (kg/m3) 1900 1900 1900 1900

Fig. 13. Comparison of a circular with a

35
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3
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4 
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c' (kg/m2) 1500 1700 500 3500
φ' 20 21 10 28
γ (kg/m3) 1900 1900 1900 1900

Fig. 14. Example of a natural slop
Now let Nslice be the total number of slices for a non-

circular failure surface. Dafi is randomly selected

through a reasonable range. In order to start with a suf-

ficient population, 11 different categories of Dafi range
are defined. For example, the failure-lines slopes can

be very rapid (Dafi between 5� and 15�), rapid (Dafi be-
tween 0� and 10�), gentle (Dafi between 0� and 5�), and
very gentle (Dafi between 0� and 3�). More cases are cre-

ated, such as the failure surface continues horizontally
25 30m

re, FS-Morgenstern=1.24

S-Bishop=1.475, FS-Morgenstern=1.5

(m)  X  Y 
A 15 50
B 19 48
C 30.5 42.5
D 32 41.5
E 10 48.5
F 10 46.7
G 10 46.2

C 
D

non-circular failure surface method.

5 30 35 40X (m)

 & GW              No EQ, No GW

,(No GW)   - - - -      GW, (No EQ) 

(m) X Y
A 15 50
B 19 48
C 25 45
D 27 44
E 32 41.5
F 10 48.1
G 10 46.7
H 10 45
I 10 44
J 17 46.7

C

D

E

e with a complex soil layers.



Table 1

Results of slope stability analysis in example 3

Loading Method No. of slice Factor of safety (Morgenstern–Price)

No earthquake – No ground water Non-circular 40 1.48

ah = 0.1 – No ground water Non-circular 44 1.37

No earthquake – Ground water Non-circular 41 1.36

ah = 0.1 – Ground water Non-circular 45 0.98

0

35

70

0 60
m

120

(m)   X   Y 
  A   0  60 
  B   0  55 
  C   0  53 
  D 97.17   0 
  E 100.83   0 
  F   110   0  

ah = 0,    FS = 1.14 
ah = 0.1, FS = 0.95 

A
B
C

Layers 1 2 3
c' (kg/m2) 4000 3000 5000
φ' 17 10 27
γ (kg/m3) 1900 1900 1900

12

3 

E D F

Fig. 15. Results of the infinite slope analysis in example 4.
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once the failure-line slope becomes horizontal. The ele-

ven cases make the simple genetic algorithm more suc-

cessful in finding the critical non-circular failure

surface. The values of Dafi are converted into binary

code and stored in the chromosome containing x1 and

af1 (Fig. 4).
The crossover and mutation are applied to the chro-

mosomes in the reproduction process as described in
Section 3. As the chromosome represents a search space

of Nslice + 2, or usually 152 dimensions (based on the de-

fault value where Nslice equals to 150), more crossover

cases need to be applied in order to generate more

new chromosomes. Five different cases of crossover

are applied: one point crossover in the x1 coding of

the chromosome, two point crossover in the x1 and af1
coding parts of chromosome, one point crossover
through the whole chromosome, one point and two

points crossover in the Dafi coding of chromosome.

The fitness value is the factor of safety against failure

for the surface, which is calculated using the simple ge-

netic algorithm method, as explained in Section 3.1. If

the created non-circular failure surface does not hit the

geometry of the natural slope, a large value is given to

the fitness value and the failure surface is subsequently
excluded from the population through the ‘‘survival of

the fittest’’ characteristic of the genetic algorithm. A

number of genetic cycles are calculated in order to find

the critical non-circular failure surface with the lowest

factor of safety.
All these calculations are performed in the slope sta-

bility analysis program as depicted in Figs. 6 and 8.
4. Examples

For the purpose of illustration, four examples of nat-

ural slopes are analysed using the simple genetic algo-
rithm method proposed in this paper. The

aforementioned slope stability analysis program is used

to analyse these examples as follows:

(a) An example of a natural slope with a homogenous

soil layer, as shown in Fig. 9, is analysed. The factor of

safety is calculated for the slope using the Bishop and

Morgenstern–Price methods for both circular and non-

circular methods. Fig. 10 shows how the fitness value,
abs(Qcosq) + abs(M) in Eq. (6), is changed and eventu-

ally converged to a negligible value as the solution con-

verges to the minimum factor of safety. The simple

genetic algorithm method is also compared to a random

reproduction approach in Fig. 11 and to the simplex

method in Fig. 12.

In Fig. 11, comparison was made between random

reproduction and the simple genetic algorithm over 30
cycles. In the random reproduction, a population of

100 was set, and then the best of 50% of the population

is kept after each reproduction. The thick lines show the

lowest factor of safety achieved after each set of 100

analyses of randomly generated surfaces (eventual
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minimum 1.86), whilst the thin lines show the corre-

sponding values with genetic reproduction producing

each generation (minimum 1.75). The increased conver-

gence rate for the simple genetic algorithm is clear. The

code is written in Visual Basic 6 which is slow compared

to other packages, but this does allow easy comparison
of the relative efficiency of different methods to by the

time taken for each run. The simple genetic algorithm

run took 9 s for the 30 generations.

Fig. 12 shows the results from solving the same exam-

ple using the simplex method presented by Bardet and

Kapuskar [2]. In this case this method was modified

by the fact that slope of the base of any slice is related

to the slope of adjacent slices, as described above. This
code was also written in Visual Basic 6, and took 41 s

to find the non-circular failure surface with the factor

of safety of 1.75. The comparison between the simple ge-

netic algorithm and the simplex method, Fig. 12, shows

the rapid convergence of the simple genetic algorithm

compared to the simplex method. As the SGA is started

with a wider population (i.e., 100 population), therefore,

the factor of safety in this method is a lower value at the
beginning of the search compare to the simplex method

(Fig. 12).

(b) An example of a slope with complex soil layering,

as shown in Fig. 13, is analysed using the proposed SGA

method. In this example the difference between the fac-

tor of safety in circular and non-circular failure surface

methods is presented. As expected, the non-circular fail-

ure surface is drawn towards the weakest layer, resulting
in a lower factor of safety than that for the circular

surface.

(c) Another natural slope with complex soil layering,

as shown in Fig. 14, is analysed using the presented

method. Four loading cases are considered: water pres-

sure and earthquake loading; water pressure and no

earthquake loading; earthquake loading and no water

pressure; and absence of both water pressure and earth-
quake loading. A pseudo-static horizontal coefficient of

earthquake loading of 0.1 is used in this analysis. The re-

sults are presented in Table 1. As expected, an increase

in water pressure resulted in a decreased factor of safety,

and an increase in pseudo-static horizontal earthquake

loading decreased the factor of safety.

(d) An infinite slope, as shown in Fig. 15, is analysed

using the simple genetic algorithm. In this example, a
soft layer is located between two layers with higher

strength. A pseudo-static horizontal coefficient of earth-

quake loading of 0.1 is assumed.
5. Conclusions

Many previous approaches to determining the non-
linear failure surface assumed the slope of the base of

any slice is independent of the slope of adjacent slices.
However, relating the slopes of adjacent slices results

in greatly increased computational efficiency. The pre-

sented simple genetic algorithm method can be applied

to find the non-circular failure surface with the lowest

factor of safety very quickly compared to random or

simplex method approaches. The Morgenstern–Price
method can be easily solved with the simple genetic algo-

rithm in order to obtain the factor of safety for a variety

of slope geometries and loading conditions. The results

of this study suggest that the presented searching method

could be used in order to analyse the stability of earth

dams, finite or effectively infinite natural slopes and any

other geotechnical problem with layered or unlayered

geology. The option of a surcharge load and pseudo-static
horizontal and vertical forces due to earthquake loading

are included to enable a comprehensive evaluation of

slope stability.

For a slope in a homogenous material, the non-lin-

ear algorithm approximates a circular failure surface

and predicts a similar factor of safety to that for a cir-

cular failure surface. For a slope with a layered struc-

ture, the circular methods can over predict the factor
of safety, which might lead to unconservative estimates

of slope stability. In these cases, non-circular slope sta-

bility analysis is essential for reliable assessment of

stability.
Appendix A. Complete formulation of the solution for the

Morgenstern–Price method

(a) Weight of slice number i:

W ¼
ðY sðiþ1Þ � Y fðiþ1Þ Þ þ ðY si � Y fiÞ

2

� �
� b � �ci

ðA:1Þ
(b) Total reaction of normal in the base of the slice, P,

which can be presented as:

1. Force (P 0) due to the effective stress.

2. Force (u Æ b Æ seca) due to the pore pressure (u)

P ¼ P 0 þ u � b � sec a ðA:2Þ

(c) Mobilized shear force (Sm = S/F)

S ¼ c0b � sec aþ P 0 � tan/0 ðA:3Þ

Sm ¼ c0 � b � sec a=F þ P 0 � tan/0=F ðA:4Þ
(d) Pseudo-static horizontal force due to earthquake,

ah ÆW
(e) Pseudo-static vertical force due to earthquake,

av Æ W.

(f) Surcharge force in the slice due to surcharge load

along the natural slope, q Æ b.
(g) Inter-slice forces Zi and Zi+1 with horizontal angle

of gi and gi+1, respectively.
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(h) Qi, Resultant force of Zi and Zi+1 forces. This

resultant force, Qi that acts with a horizontal angle

of hi (Fig. 3), is calculated from equilibrium condi-

tion in two perpendicular directions, using Eqs.

(A.5) and (A.6).

For equilibrium in each slice, the sum of inter-slice

forces in the P and S/F direction must be zero. The pro-

cess is shown in Eqs. (A.5) and (A.6), respectively,

P þ Qi � sinða� hiÞ � W � cos aþ W � av � cos a
þ W � ah � sin a� q � b � cos a ¼ 0 ðA:5Þ

S=F � Qi � cosða� hiÞ � W � sin aþ W � av � sin a
� W � ah � cos a� q � b � sin a ¼ 0 ðA:6Þ

Substituting Eqs. (A.3) and (A.4) in Eqs. (A.5) and

(A.6):
Qi ¼
c0 �b�seca

F þ tan/0

F ðW � cosa�W � av � cosa�W � ah � sina� u � b � secaþ q � b � cosaÞ �W � sinaþW � av � sina�W � ah � cosa� q � b � sina
cosða� hiÞ � ð1þ tanða� hiÞ � tan/

0

F Þ
ðA:7Þ
For moment equilibrium in each slice, take the mo-

ment about the point E equal zero (Fig. 3):X
ME ¼ Q � cos h � hQ � W � ah � hG ¼ 0 ðA:8Þ

After calculating Q for each slice, hQ is calculated

using Eq. (A.8), then the y coordinate of point F in

Fig. 3, Y qi is:

Y qi ¼ Y ei þ hQ ðA:9Þ

Now for overall equilibrium in the natural slope, the

sum of horizontal and vertical inter-slice forces must be

zero.X
ðQi � cos hiÞ ¼ 0 ðA:10Þ

X
ðQi � sin hiÞ ¼ 0 ðA:11Þ

Furthermore, the sum of the overall moments about an

arbitrary point must be zero, in this case let the mo-

ments about the origin (x = 0, y = 0) be zero:X
ðMÞ ¼

X
ðQi � cos hi � Y qi þ Qi � sin hi � XqiÞ ¼ 0

ðA:12Þ
The vertical inter-slice force divided by the horizontal

inter-slice force can be defined in terms of k � f ðx0iÞ
(Morgenstern–Price method [10]), where x0i is the line-

arly normalized xi coordinate with values at the two

ends of the failure surface equal to zero and p, respec-
tively. In this case, f ðx0iÞ is by convention assumed to
be equal to sinðx0iÞ, therefore, the overall shape of

f ðx0iÞ on the failure surface is a half sin shape. In the

Spencer method [10], f ðx0iÞ is equal to 1, therefore,
the angle of inter-slice resultant force is equal for all

the slices through the failure surface, Eq. (A.15).

Now let hi be the horizontal angle of inter-slice resul-

tant force Qi.

tan hi ¼ k � f ðx0iÞ ðA:13Þ
Two cases for f ðx0iÞ will be as follows:

ðaÞ f ðx0iÞ ¼ sinðx0iÞ then hi ¼ arctanðk � sinðx0iÞÞ
ðMorgenstern–Price methodÞ ðA:14Þ

ðbÞ f ðx0iÞ ¼ 1 then hi ¼ arctanðkÞ
ðSpencer methodÞ ðA:15Þ

Now to find the factor of safety, Eq. (A.10) (or

Eq. (A.11)) and Eq. (A.12) need to be solved. There

will be two equations and two unknowns such as k
and F.
Let assume a pair of (F*,k*) is one of the answers to
the two equations f(F,k) = 0 and g(F,k) = 0, therefore,

(F*,k*) will also be an answer to the following equation:

jf ðF ; kÞj þ jgðF ; kÞj ¼ 0 ðA:16Þ
Using the above algebraic theory, Eqs. (A.10) and

(A.12) can be written as follows:X
M

��� ���þ X
ðQi � cos hiÞ

��� ���
¼

X
ðQi � cos hiÞ � Y i þ Qi � sin hi � X iÞ

��� ���
þ

X
ðQi � cos hiÞ

��� ��� ¼ 0 ðA:17Þ

Eq. (A.17) is now solved using the genetic algorithm that

is explained in Section 3.1.
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